
Document : PRONTO.WPD
Author : M. Majoor
Subject : Pronto communication and Pronto proprietary remote control formats

Revision overview

Revision Date Author Description

20010408 2001-04-08 MM Initial draft

20020609 2002-06-09 MM Added information on how ProntoEdit/Emulator sets and uses the serial
port
Added information on ‘irlearn’

20020629 2002-06-29 MM Added remote control information

20020719 2002-07-19 MM Added ‘!’ remark for ‘irstart’/’irstop’ and updated some timing
information.
Added some information on the learned format.

20020727 2002-07-27 MM Added Pronto format ‘0100'

20020817 2002-08-17 MM Forgot to add customer code in RC6A list

Introduction
This document describes some of the basics behind the Pronto from a technical point of view. It describes the communication
between the PC and the Pronto and will discuss the proprietary remote control formats used by the Pronto.

All test/actions with the Pronto are done using the following Pronto firmware:
Sys V3.62
App V4.85
RU890 V1.0

Communication with the Pronto
Communication with the Pronto is usually handled by the ProntoEdit or ProntoEmulator program. The basic communication
specifications are:

Baudrate: 115200
Databits: 8
Parity: None
Stopbits: 1/2

The Pronto (re)acts on specific commands received through its serial port. These commands are:

Command Meaning

q ccf Query CCF

cap ccf Report capability of CCF

possible ccf Report possible capability CCF

dl ccf Download CCF (to Pronto)

ul ccf Upload CCF (from Pronto)

irlearn 5000 Learn IR code

irstart / irstop Start/Stop of IR code

time Report current time

reboot Reboot Pronto

We will go into more detail later for each of these commands. For most, if not all, of the commands a dump of the serial
communication is added. In such a printout the time relation of the data can be seen. Each line has a number (either 1 or 2),
which indicates which device it is. In our case device 1 is the PC and device 2 is the Pronto. A typical dump looks like this:
-----------------hex data -----------------------*-------ASCII------
00 74 69 6D 65 0D 1 . time. <- sent by PC
 21 74 69 6D 65 20 3D 20 32 39 2 ! time = 29 <- sent by Pronto
 1 <- sent by PC
39 37 32 37 0A 2 9727. <- sent by Pronto

The first data from the PC ($00) is not actual data being transmitted. In fact it is the result of issuing a break signal on the
communication port for about 10 ms. This break signal means that, instead of the serial line being at its usual negative level, it

will go to a positive level. If the Pronto was inactive (screen off) we could also send the data $00 itself (or any other data for
that matter) instead of a break signal, but this does not work when the Pronto is active (screen on). Using a break signal works
in both circumstances.
The Pronto reponds with a ‘!’ after it detects that a request for communication is issued. Be aware that the response time of
the Pronto is relatively long. Before the ‘!’ is issued you have to wait more than half a second (typical response time is 515
ms). It should be noted that, before a command is send after receiving the ‘!’, a small delay of about 10 ms should be taken
into account. Without this delay communication is more prone to go wrong (especially when multiple ‘irstart’/’irstop’
sequences are used).

Note: when the serial cable is plugged in, the Pronto will issue a ‘!’ by itself. Also, when the serial cable is plugged in while
both left and right keys are being pressed the Pronto will issue a ‘*’ instead.

q ccf
This query command has the following, typical, response:
-----------------hex data -----------------------*-------ASCII------
00 71 20 63 63 66 0D 1 . q ccf.
 21 30 20 34 35 35 32 34 20 2 ! 0 45524
 1
32 30 30 30 31 32 30 36 20 32 33 31 32 34 37 0D 2 20001206 231247.
 1
0A 2 .

This translates into:
0 ‘Dirty flag’ indicating the CCF has been changed in the Pronto but has not yet been uploaded. In this case it

means ‘not dirty’.
45524 Size of the the CCF file (in bytes).
20001206 Date (6 December, 2000) of the CCF file. This is the ISO8601 notation of the date. See further in this

document for more information on the ISO8601 formats.
231247 Time (23:12:47) of the CCF file. 24-hour notation.

Typical response time:
! 515 ms
answer 21 ms (time started after sending the command and stopped after receiving the complete answer)

cap ccf
This query command has the following, typical, response:
-----------------hex data -----------------------*-------ASCII------
00 63 61 70 20 63 63 66 0D 1 . cap ccf.
 21 63 61 70 3A 30 78 2 ! cap:0x
 1
32 30 30 30 31 20 30 78 32 30 30 30 31 0D 0A 2 20001 0x20001..

This translates into:
0x20001 $20001 = 131073 bytes

Typical response time:
! 515 ms
answer 21 ms (time started after sending the command and stopped after receiving the complete answer)

possible ccf
This query command has the following, typical, response:
-----------------hex data -----------------------*-------ASCII------
00 70 6F 73 73 69 62 6C 65 20 63 63 66 0D 1 . possible ccf.
 21 63 2 ! c
 1
61 70 61 62 6C 65 3A 30 78 32 30 30 30 31 0D 0A 2 apable:0x20001..

This translates into:
0x20001 $20001 = 131073 bytes

Typical response time:
! 515 ms
answer 31 ms (time started after sending the command and stopped after receiving the complete answer)

dl ccf
This command will download the CCF file from the PC to the Pronto. Before this command is issued ProntoEdit investigates the
current status of the Pronto. The typical start of commencing the download:
-----------------hex data -----------------------*-------ASCII------
00 63 61 70 20 63 63 66 0D 1 . cap ccf.
 21 63 61 70 3A 30 78 2 ! cap:0x
 00 1 .
32 30 30 30 31 20 30 78 32 30 30 30 31 0D 0A 2 20001 0x20001..
 70 6F 73 73 69 62 6C 65 20 63 63 66 0D 1 possible ccf.
21 63 61 2 ! ca
 00 1 .
70 61 62 6C 65 3A 30 78 32 30 30 30 31 0D 0A 2 pable:0x20001..
 71 20 63 63 66 0D 1 q ccf.
21 30 20 34 35 35 32 34 20 32 2 ! 0 45524 2
 1
30 30 30 31 32 30 36 20 32 33 31 32 34 37 0D 0A 2 0001206 231247..
00 64 6C 20 63 63 66 0D 02 01 FE 00 00 22 1 . dl ccf."
 21 43 2 ! C
.................ETC..
.................ETC..

After the ‘dl ccf’ command the data is send using the XModem/CRC protocol. For more information see the ‘Upload/download
protocol’ section.

When all data is sent to the Pronto, the Pronto itself will issue the ‘reboot’ command. The only difference with a manually
‘reboot’ command is some additional text at the end (‘freshly done’). See the ‘reboot’ command for the full response. The
typical response from downloading ends in:
-----------------hex data -----------------------*-------ASCII------
0D 5F 43 43 46 2C 52 55 38 39 30 20 56 31 2E 30 2 ._CCF,RU890 V1.0
 1
20 5B 30 31 2F 31 32 2F 32 30 30 31 20 31 32 3A 2 [01/12/2001 12:
 1
31 30 5D 0A 0D 66 72 65 73 68 6C 79 20 6C 6F 61 2 10]..freshly loa
 1
64 65 64 20 43 43 46 0A 0D 75 70 64 61 74 69 6E 2 ded CCF..updatin
 1
67 20 61 6C 69 61 73 65 73 2E 2E 2E 20 64 6F 6E 2 g aliases... don
 1
65 0A 0D 21 2 e..!

ul ccf
This command will upload the CCF file from the Pronto to the PC. Before this command is issued ProntoEdit investigates the
current status of the Pronto. The typical start of commencing the upload:
-----------------hex data -----------------------*-------ASCII------
 00 71 20 63 63 66 0D 1 . q ccf.
 21 30 20 34 35 35 32 2 ! 0 4552
 1
34 20 32 30 30 30 31 32 30 36 20 32 33 31 32 34 2 4 20001206 23124
 00 75 6C 20 63 63 66 0D 43 1 . ul ccf.C
37 0D 0A 21 02 01 FE 2 7.. ! ...
 1
00 00 22 24 00 00 00 00 40 A5 5A 40 5F 43 43 46 2 .."$....@.Z@_CCF
 1
00 00 00 00 07 D0 0C 06 00 17 0C 2F 00 00 00 00 2 /....
.................ETC..
.................ETC..

After the ‘ul ccf’ command the data is send using the XModem/CRC protocol. For more information see the ‘Upload/download
protocol’ section.

irlearn 5000
This command will put the Pronto into learning mode. The Pronto will send the learned data as soon as it has ‘learned’ it. In the
mean time the PC queries the Pronto (with <C>) at regular intervals for its data. If the Pronto fails to ‘learn’ correctly, the
Pronto will respond with old data after receiving the fifth query from the PC. If the PC does not receive any data after it’s
eleventh query then it will abort the whole and will send five times a $18.
The typical start of learning a code by the Pronto (in this case there are two queries):
-----------------hex data -----------------------*-------ASCII------
00 69 72 6C 65 61 72 6E 20 35 30 30 30 0D 43 1 . irlearn 5000.C
 21 2 !
43 1 C
 01 01 FE 00 00 00 6D 00 12 00 11 01 40 00 A0 2 m.....@..
 1
00 15 00 3B 00 15 00 3B 00 15 00 13 00 15 00 13 2 ...;...;........
 1
00 15 00 13 00 15 00 13 00 15 00 3B 00 15 00 13 2 ;....
 1
00 15 00 3B 00 15 00 13 00 15 00 13 00 15 00 13 2 ...;............
 1
00 15 00 13 00 15 00 3B 00 15 00 13 00 15 00 13 2 ;........
 1
00 15 03 4A 00 15 00 3B 00 15 00 3B 00 15 00 13 2 ...J...;...;....
 1
00 15 00 13 00 15 00 13 00 15 00 13 00 15 00 3B 2 ;
 1
00 15 00 13 00 15 00 3B 00 15 00 13 00 15 00 13 2 ;........
 06 1 .
00 15 00 13 52 87 01 02 FD 00 15 00 13 00 15 2 R.
 1
00 3B 00 15 00 13 00 15 00 13 00 15 03 78 00 15 2 .;...........x..
 1
00 3B 00 15 00 3B 00 15 00 13 00 15 00 13 00 15 2 .;...;..........
 1
00 13 00 15 00 13 00 15 00 3B 00 15 00 13 00 15 2 ;......
 1
00 3B 00 15 00 13 00 15 00 13 00 15 00 13 00 15 2 .;..............
 1
00 13 00 15 00 3B 00 15 00 13 00 15 00 13 00 15 2 ;..........
 1
03 78 00 15 00 3B 00 15 00 3B 00 15 00 13 00 15 2 .x...;...;......
 1
00 13 00 15 00 13 00 15 00 13 00 15 00 3B 00 15 2 ;..
 06 15 1 . .
00 13 00 15 00 3B 00 15 00 13 D3 76 04 04 2 ;.....v . .
06 1 .
 2

The learned code transmitted here is (taken from the ‘Edit IR Code’ window of ProntoEdit):
0000 006d 0012 0011 0140 00a0 0015 003b
0015 003b 0015 0013 0015 0013 0015 0013
0015 0013 0015 003b 0015 0013 0015 003b
0015 0013 0015 0013 0015 0013 0015 0013
0015 003b 0015 0013 0015 0013 0015 034a
0015 003b 0015 003b 0015 0013 0015 0013
0015 0013 0015 0013 0015 003b 0015 0013
0015 003b 0015 0013 0015 0013 0015 0013
0015 0013 0015 003b 0015 0013 0015 0013
0015 0378

After the ‘irlearn 5000’ command the data is send using the XModem/CRC protocol. For more information see the
‘Upload/download protocol’ section.

A typical ‘failed’ learning by the Pronto:
-----------------hex data -----------------------*-------ASCII------
00 69 72 6C 65 61 72 6E 20 35 30 30 30 0D 43 1 . irlearn 5000.C
 21 2 !
43 43 43 43 43 1 CCCCC
 01 01 FE 00 00 00 6D 00 00 00 00 2 m....
 1
01 40 00 A0 00 15 00 3B 00 15 00 3B 00 15 00 13 2 .@.....;...;....
 1
00 15 00 13 00 15 00 13 00 15 00 13 00 15 00 3B 2 ;
 1
00 15 00 13 00 15 00 13 00 15 00 3B 00 15 00 13 2 ;....
 1
00 15 00 13 00 15 00 13 00 15 00 3B 00 15 00 13 2 ;....
 1
00 15 00 13 00 15 03 4A 00 15 00 3B 00 15 00 3B 2 J...;...;
 1
00 15 00 13 00 15 00 13 00 15 00 13 00 15 00 13 2
 1
00 15 00 3B 00 15 00 13 00 15 00 13 00 15 00 3B 2 ...;...........;
 06 15 06 1 . . .
00 15 00 13 00 15 00 13 2A D1 04 04 2 *. . .

Note: it seems that the Pronto does not allow for a negative acknowledgment from the PC. This means that when a $15 is
send instead of the $06 the Pronto does not retransmits the block.

irstart / irstop
This command will send remote control data to the Pronto which it will transmit on its infrared output. This command is the
same as used by ProntoEmulator for emulating the ProntoEdit CCF file.
The typical sequence:
-----------------hex data -----------------------*-------ASCII------
00 69 72 73 74 61 72 74 0D 01 01 FE 60 00 1 . irstart. ...`.
 21 43 2 ! C
00 76 00 00 00 01 00 00 00 01 00 00 00 00 00 00 1 .v..............
 2
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1
 2
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1
 2
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1
 2
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1
 2
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1
 2
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1
 2
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0D D7 1
 2
 04 04 69 72 73 74 6F 70 0D 1 . . irstop.
06 15 06 21 2 . . . !

There are some delays to be taken into account before receiving data from the Pronto and replying to it:
. ‘irstop’ wait about 30 ms before sending this.
The last ‘!’ response from the Pronto is generated when it has send the infrared code. It is ONLY generated when the screen of
the Pronto is active!
You can not send multiple ‘irstart’ commands without any delays to the Pronto, you should take a delay into account between
commands (about 100 ms).
Instead of the ‘!’ response as a result of the break condition, the Pronto can also respond with ‘C’ when itself detects a timeout
(use a timeout of > 700 ms).

The data transmitted is the same data as in the ‘Edit IR Code’ window of ProntoEdit.
After the ‘irstart’ command the data is send using the XModem/CRC protocol. For more information see the ‘Upload/download
protocol’ section.

Instead of responding with <$06> the Pronto might also respond with <C>.

Typical response time:
! 515 ms
<C> 28 ms
<$06> 27 ms (response time after data has been send)
<$15> 15 ms
<$06> 2 ms
! 515 ms

Important note: because a command send using ‘irstart’ is only transmitted once some devices which depend on repeated
codes will not respond. When the same data is programmed into the Pronto the device will usually respond
because the code is repeated while the key is being pressed.

Only a single proprietary format code is allowed to be send to the Pronto. All but the first one are ignored by the Pronto. Thus
when the following code is required to be sent twice (“5000 0073 0000 0001 0000 0001" which is the equivalent of RC5
0 1) then sending “5000 0073 0000 0001 0000 0001 5000 0073 0000 0001 0000 0001" is not possible. This has to
be divided into two separate ‘irstart’/’irstop’ commands. If you explicitly want to send such a code twice in one go, then you
have to convert it into a learned code sequence.

time
When the “time” command is issued the Pronto will respond with its current time. The returned number is the number of
seconds passed, so we must convert these into individual hours, minutes and seconds. Note that the number of hours extends
past the, possible, 23 hours.

A typical communication dump looks like this:
-----------------hex data -----------------------*-------ASCII------
00 74 69 6D 65 0D 1 . time.
 21 74 69 6D 65 20 3D 20 32 39 2 ! time = 29
 1
39 37 32 37 0A 2 9727.

In this response we would translate the number ‘299727' in the following way:
Hours (299727 div 3600) mod 24 == 83 mod 24 == 11
Minutes (299727 div 60) mod 60 == 4995 mod 60 == 15
Seconds 299727 mod 60 == 27
Which results in 11:15:27 as the time.

Note: this is one of the few responses which only adds a single linefeed ($0A) instead of a carriage return ($0D) and a
linefeed.

Typical response time:
! 515 ms
answer 15 ms (time started after sending the command and stopped after receiving the complete answer)

reboot
The reboot command is sometimes necessary when you communicate with the Pronto. At times, especially when
communication fails, the Pronto seems to get ‘hang-up’ after a certain period of time (if you are lucky the Pronto itself will
reboot itself using its internal watchdog mechanism but this is not always the case). If the Pronto ‘hangs’ you will have no
visible display anymore although the remote control buttons could work correctly. If this happens you have to activate the reset
button on the Pronto (back) to have it restarted. To circumvent this problem we can reboot the Pronto using the ‘reboot’
command. This command is (internally) executed by the Pronto itself when a new CCF file is uploaded to the Pronto. The
‘reboot’ command will restart the Pronto. Keep in mind that the rebooting process is not one continuous stream of data. The
delays between receiving data can be long (more than 3 seconds in some cases). The last received ‘!’ from the Pronto is
received when the Pronto itself issues a beep sound.

-----------------hex data -----------------------*-------ASCII------
00 72 65 62 6F 6F 74 0D 1 . reboot.
 21 0A 0D 0A 0D 42 6F 6F 2 ! Boo
 1
74 69 6E 67 2E 2E 2E 0A 0D 42 4F 4F 54 2C 34 30 2 ting.....BOOT,40
 1
30 30 30 30 5B 30 30 5D 2C 56 31 2E 33 2E 32 20 2 0000[00],V1.3.2
 1
41 4D 44 20 20 20 20 20 20 20 20 20 20 2C 31 30 2 AMD ,10
 1
2F 31 33 2F 31 39 39 39 2C 30 38 3A 33 34 3A 32 2 /13/1999,08:34:2
 1
35 2C 43 52 43 20 4F 4B 0A 0D 32 30 0A 0D 50 53 2 5,CRC OK..20..PS
 1
4F 53 2C 34 30 34 30 30 30 5B 30 32 5D 2C 56 31 2 OS,404000[02],V1
 1
2E 30 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 .0
 1
20 20 2C 30 33 2F 31 37 2F 32 30 30 30 2C 31 32 2 ,03/17/2000,12
 1
3A 35 33 3A 35 30 2C 43 52 43 20 4F 4B 0A 0D 33 2 :53:50,CRC OK..3
 1
30 0A 0D 5F 53 59 53 2C 34 31 30 30 30 30 5B 30 2 0.._SYS,410000[0
 1
38 5D 2C 56 33 2E 36 32 20 20 20 20 20 20 20 20 2 8],V3.62
 1
20 20 20 20 20 20 20 2C 30 33 2F 31 37 2F 32 30 2 ,03/17/20
 1
30 30 2C 31 32 3A 35 35 3A 30 35 2C 43 52 43 20 2 00,12:55:05,CRC
 1
4F 4B 0A 0D 36 30 0A 0D 5F 41 50 50 2C 34 34 30 2 OK..60.._APP,440
 1
30 30 30 5B 31 31 5D 2C 41 70 70 20 56 34 2E 38 2 000[11],App V4.8
 1
35 20 20 20 20 20 20 20 20 20 20 20 2C 30 33 2F 2 5 ,03/
 1
31 37 2F 32 30 30 30 2C 31 32 3A 35 35 3A 30 30 2 17/2000,12:55:00
 1

2C 43 52 43 20 4F 4B 0A 0D 34 30 0A 0D 5F 43 43 2 ,CRC OK..40.._CC
 1
46 2C 34 61 31 30 30 30 5B 31 37 5D 2C 4E 2F 41 2 F,4a1000[17],N/A
 1
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2
 1
20 2C 31 32 2F 30 36 2F 32 30 30 30 2C 32 33 3A 2 ,12/06/2000,23:
 1
31 32 3A 34 37 2C 43 52 43 20 53 4B 50 0A 0D 35 2 12:47,CRC SKP..5
 1
32 0A 0D 37 30 0A 0D 37 34 0A 0D 37 38 0A 0D 38 2 2..70..74..78..8
 1
30 0A 0D 39 32 0A 0D 38 32 0A 0D 38 34 0A 0D 38 2 0..92..82..84..8
 1
36 0A 0D 38 38 0A 0D 39 30 0A 0D 39 34 0A 0D 39 2 6..88..90..94..9
 1
36 0A 0D 39 38 0A 0D 0A 0D 4C 5A 4F 20 72 65 61 2 6..98....LZO rea
 1
6C 2D 74 69 6D 65 20 64 61 74 61 20 63 6F 6D 70 2 l-time data comp
 1
72 65 73 73 69 6F 6E 20 6C 69 62 72 61 72 79 20 2 ression library
 1
28 76 31 2E 30 34 2C 20 4D 61 72 20 31 35 20 31 2 (v1.04, Mar 15 1
 1
39 39 38 29 2E 0A 0D 43 6F 70 79 72 69 67 68 74 2 998)...Copyright
 1
20 28 43 29 20 31 39 39 36 2C 20 31 39 39 37 2C 2 (C) 1996, 1997,
 1
20 31 39 39 38 20 4D 61 72 6B 75 73 20 46 72 61 2 1998 Markus Fra
 1
6E 7A 20 58 61 76 65 72 20 4A 6F 68 61 6E 6E 65 2 nz Xaver Johanne
 1
73 20 4F 62 65 72 68 75 6D 65 72 0A 0D 0A 0D 75 2 s Oberhumer....u
 1
73 69 6E 67 20 65 6D 62 65 64 64 65 64 20 66 6F 2 sing embedded fo
 1
6E 74 73 0A 0D 66 6F 6E 74 20 30 20 3D 20 50 72 2 nts..font 0 = Pr
 1
6F 6E 74 6F 20 38 0A 0D 66 6F 6E 74 20 31 20 3D 2 onto 8..font 1 =
 1
20 70 72 6F 6E 74 6F 31 30 0A 0D 66 6F 6E 74 20 2 pronto10..font
 1
32 20 3D 20 50 72 6F 6E 74 6F 20 31 32 0A 0D 66 2 2 = Pronto 12..f
 1
6F 6E 74 20 33 20 3D 20 50 72 6F 6E 74 6F 20 31 2 ont 3 = Pronto 1
 1
34 0A 0D 66 6F 6E 74 20 34 20 3D 20 50 72 6F 6E 2 4..font 4 = Pron
 1
74 6F 20 31 36 0A 0D 66 6F 6E 74 20 35 20 3D 20 2 to 16..font 5 =
 1
50 72 6F 6E 74 6F 20 31 38 0A 0D 0A 0D 5F 43 43 2 Pronto 18...._CC

 1
46 2C 52 55 38 39 30 20 56 31 2E 30 20 5B 31 32 2 F,RU890 V1.0 [12
 1
2F 30 36 2F 32 30 30 30 20 32 33 3A 31 32 5D 0A 2 /06/2000 23:12].
 1
0D 21 2 .!

Typical response time:
! 515 ms
Booting... 105 ms
<LF> 2006 ms
BOOT,...CRC OK 20 198 ms
PSOS,...CRC OK 30 508 ms
_SYS,...CRC OK 60 1081 ms
_APP,...CRC OK 40 4416 ms
_CCF,...CRC SKP 52 3 ms
70 74 78 231 ms
80 9298 160 ms
LZO ... 3 ms
Copyright ... 11 ms
using embedded ... 108 ms
font 0 1 ms
<CR><LF> 170 ms
_CCF,... 3 ms
! 3312 ms

Upload/Download protocol
When a lot of data has to be transferred between the Pronto and the PC a XModem/CRC protocol mechanism is used. This
protocol is based upon transmitting blocks of data with a checksum. The received data can be checked using the CRC checksum
and is acknowledged by the receiving end. The following is a typical layout of the transmission (note that there a timeout issues
involved in the whole protocol):
<C> Request a 2 byte CRC checksum to follow the data

Because the Pronto always uses a 2 byte checksum this is the only possible option.
<$02> We send a block of 1024 bytes

If we would send a <$01> this would indicate that 128 bytes of data would follow.
<$01> Block number $01
<$FE> Block number $01 (=$FF minus block number)
......... 1024 bytes of data

Or 128 bytes of data if we started with <$01> instead of <$02>.
<CRC> The CRC checksum (2 bytes). The high byte is transmitted first.
<CRC>

<$06> <ACK> Acknowledgment (for correct reception) of data block
At this point the next block can be send. The blocknumber is increased by 1.

Should something go wrong at the reception of a block of data the response is, obviously, not a <ACK>.
The response would be:

<$15> <NAK> Negative acknowledgment (incorrect reception)
At this point the (same) data should be send again with the same block number.

When there is no more data to send (we just received the last block), the ‘ending’ part of such a
communication cycle would be:

<CRC>
<CRC>

<$06> <ACK> Acknowledgment (for correct reception) of data block
<$04> <EOT> End of Text (no more data)

<$15> <NAK> Negative Acknowledgment (acknowledgment of EOT)
The, normal, XModem protocol would expect a <ACK> at this point and would end here. The
Pronto/PC always assumes that the <EOT> has been detected incorrectly and request a resend of the
<EOT> using a <NAK> instead of a <ACK>.

<$04> <EOT> End of Text (acknowledgment of NAK)
<$06> <ACK> Acknowledgment (of EOT)

If communication is to be aborted we would use multiple cancellations to inform the pronto/PC. This
however does not always work because most of the time the other side is expecting a defined number of
data bytes and does not check the data itself at those points. In such a case we need to continue sending
data until we get a response or use a timeout. At any case we would send a number of cancellations to
the Pronto/PC:

<$18><$18><$18><$18>

Calculation of the CRC checksum is done using the following algorithm:
1. Reset the checksum to zero
2. For each byte to be transmitted in the block of data (‘Data’) adjust the checksum accordingly (in Pascal):

newCRC := oldCRC xor (Data shl 8);
for Loop:= 0 to 7 do
begin
 if (newCRC and $8000)<>0 then

 newCRC := (newCRC shl 1) xor $1021
 else
 newCRC := (newCRC shl 1);
end;

Pronto learned code format
When using ‘irlearn’ and ‘irstart’ data is sent/received from the Pronto in specific formats. All formats use the same structure
for their data. All data is grouped into pairs of one word (two bytes). The generic structure of these formats is:

IIII CCCC OOOO RRRR xxxx xxxx

Where
IIII The format identifier
CCCC The carrier frequency

Frequency = 1000000/(CCCC * 0.241246)
CCCC = (1000000 / 0.241246) / Frequency = 4145146 / Frequency

or the period time (IIII=‘0100')
Period = 1 / Frequency
Period = (CCCC * 0.241246) / 1000000
CCCC = (Period * 0.241246) / 1000000 = Period / 4145146

OOOO Number of burst pairs (once code). The ‘once code’ is used when a single code is to be transmitted.
RRRR Number of burst pairs (repeat code). The ‘repeat code’ is used when a code is to be repeatedly send. This

happens when you keep a key pressed.
xxxx xxxx First burst pair. A burst pair is a sequence of two words of data.
.... Next burst pair.

All numbers are made up of 4 digits and are in hexadecimal. This means that if you see the number ‘1234' this actually means
$1234 (which is 4660 in decimal notation).

Each burst pair consist of two numbers:
AAAA IIII

Where
AAAA The number of active cycles (or periods)
IIII The number of in-active cycles (or periods)

First the burst pairs belonging to the ‘once code’ are placed followed by the burst pairs for the ‘repeat code’. If the number of
burst pairs for the ‘once code’ or ‘repeat code’ is zero then no burst pairs are used for those.

This indicates how long a signal is sending the carrier frequency (AAAA) and how long it is not (IIII). Data transmission is done
by activating and de-activating the carrier frequency. The way this carrier frequency is used determines the remote control data
(the type of remote control data).

The format identifier indicates what kind of information is contained in the burst pairs. Here are some of the formats used by
the Pronto:

0000 Learned code format (modulated)
0100 Learned code format (unmodulated)
5000 RC5 code format
5001 RC5x code format
6000 RC6 code format
6001 RC5 mode A code format

Other formats exist but are typically database ‘formats’ and are not discussed here.

All but the ‘0000'/’0100' formats are Pronto proprietary formats and are discussed in the next chapter. We go into some
detail on the learned code format here (‘0000'/’0100'). Because there are other documents on the learned code available,
we won’t go into much detail here but just give a summary. Lets explain it using some examples.

0000 Learned code format (modulated)
0000 0073 0001 0002 0010 0020 0010 0010 0030 0040

= IIII CCCC OOOO RRRR 1111 1111 2222 2222 3333 3333

This means:
IIII Format = ‘0000' is ‘modulated learned code format’
CCCC Period time = $0073 = 115 == 36045 Hz
OOOO There is $0001 = 1 once code burst pairs
RRRR There are $0002 = 2 repeat code burst pairs
1111 1111 The first burst pair (belongs to the once code burst pairs)

0010 0020 indicates that the carrier signal is on for $0010 = 16 cycles and off for $0020 = 32 cycles
2222 2222 The second burst pair (1st burst pair for the repeat code burst pairs)

0010 0010 indicates that the carrier signal is on for $0010 = 16 cycles and off for $0010 = 16 cycles
3333 3333 The thirst burst pair (2nd burst pair for the repeat code burst pairs)

0030 0040 indicates that the carrier signal is on for $0030 = 48 cycles and off for $0040 = 64 cycles

Other examples:
0000 0073 0000 0002 0010 0020 0010

= IIII CCCC OOOO RRRR 1111 1111 2222

Here there are no burst pairs for the ‘once code’, only burst pairs for the ‘repeat code’.

Other examples:
0000 0073 0002 0000 0010 0020 0010

= IIII CCCC OOOO RRRR 1111 1111 2222

Here there are no burst pairs for the ‘repeat code’, only burst pairs for the ‘once code’.

0100 Learned code format (unmodulated)
0100 0073 0001 0002 0010 0020 0010 0010 0030 0040

= IIII CCCC OOOO RRRR 1111 1111 2222 2222 3333 3333

This means:
IIII Format = ‘0100' is ‘unmodulated learned code format’
CCCC Period (1/ Frequency) = $0073 = 115 == 36045 Hz == 0.000027743 s == 27.743 us
OOOO There is $0001 = 1 once code burst pairs
RRRR There are $0002 = 2 repeat code burst pairs
1111 1111 The first burst pair (belongs to the once code burst pairs)

0010 0020 indicates that the IR signal is on for $0010 = 16 periods and off for $0020 = 32 periods
2222 2222 The second burst pair (1st burst pair for the repeat code burst pairs)

0010 0010 indicates that the IR signal is on for $0010 = 16 periods and off for $0010 = 16 periods
3333 3333 The thirst burst pair (2nd burst pair for the repeat code burst pairs)

0030 0040 indicates that the IR signal is on for $0030 = 48 periods and off for $0040 = 64 periods

Pronto proprietary remote control formats
The Pronto has different ways of using remote control commands. The simplest way is to learn the code from the original
remote control and use this learned code. Another method is using codes from the databases (which probably are just pointers
to learned code). Besides these, the Pronto also has some proprietary formats you can choose from. These are the RC5, RC5X,
RC6 and RC6A formats.
Most noticeable is that, when you define a remote control code using these proprietary formats, that it is made up of much less
information than a learned code needs.
Below we will go into more detail on what these proprietary formats are made of.

RC5 Generates the following code:
5000 0000 0000 0001 SSSS CCCC

5000 Identifier for the RC5 format
0000 Initially 0000, but when reviewing later it can contain the carrier frequency
0000 Always 0000, indicating no ‘one time only’ code data
0001 Always 0001, indication one ‘repeat’ code data follows (i.e. SSSS CCCC)
SSSS The SYSTEM identifier: 0..31
CCCC The COMMAND identifier: 0..127

The RC5 format itself is defined as follows (represented as a bit stream):
ss T SSSSS CCCCCC

ss = 10 Add 64 to command
ss = 11 Use command as it is
T Toggle bit
SSSSS System bits (5)
CCCCCC Command bits (6)

All these bits are to be biphase encoded, meaning that a single bit is split up into two half bits:
0 -> 10
1 -> 01

RC5X Generates the following code:
5001 0000 0000 0002 SSSS CCCC DDDD 0000

5001 Identifier for the RC5X format
0000 Initially 0000, but when reviewing later it can contain the carrier frequency
0000 Always 0000, indicating no ‘one time only’ code data
0002 Always 0002, indication two ‘repeat’ code data follows (i.e. SSSS CCCC DDDD 0000)
SSSS The SYSTEM identifier: 0..31
CCCC The COMMAND identifier: 0..127
DDDD The DATA identifier: 0..63

The RC5X format itself is defined as follows (represented as a bit stream):
ss T SSSSS dddd CCCCCC DDDDDD

ss = 10 Add 64 to command (to be biphase encoded)
ss = 11 Use command as it is (to be biphase encoded)
T Toggle bit (to be biphase encoded)
SSSSS System bits (5) (to be biphase encoded)
dddd Divider bits (4) (NOT to be biphase encoded)

‘0000'
CCCCCC Command bits (6) (to be biphase encoded)
DDDDD Data bits (6) (to be biphase encoded)

All bits to be biphase encoded will have a single bit split up into two half bits:
0 -> 10
1 -> 01

RC6 Generates the following code:
6000 0000 0000 0001 SSSS CCCC

6000 Identifier for the RC6 format
0000 Initially 0000, but when reviewing later it can contain the carrier frequency
0000 Always 0000, indicating no ‘one time only’ code data
0001 Always 0001, indication one ‘repeat’ code data follows (i.e. SSSS CCCC)
SSSS The SYSTEM identifier: 0..255
CCCC The COMMAND identifier: 0..255

The RC6 format itself is defined as follows (represented as a bit stream):
hhhhhhhh TT SSSSSSSS CCCCCCCC

hhhhhhhh Header data (16) (NOT to be biphase encoded)
‘1111110010010101'

TT Toggle bits (4) (NOT to be biphase encoded)
‘0011' or
‘1100'

SSSSSSSS System bits (8) (to be biphase encoded)
CCCCCCCC Command bits (8) (to be biphase encoded)

All bits to be biphase encoded will have a single bit split up into two half bits:
0 -> 01
1 -> 10 Note: inverse from RC5/RC5X biphase format!

Note: a RC6 bit transmission takes half the time of a RC5/RC5X bit transmission!

RC6A Generates the following code:
6001 0000 0000 0002 UUUU SSSS CCCC 0000

6001 Identifier for the RC6A format
0000 Initially 0000, but when reviewing later it can contain the carrier frequency
0000 Always 0000, indicating no ‘one time only’ code data
0002 Always 0002, indication two ‘repeat’ code data follows (i.e. UUUU SSSS CCCC 0000)
UUUU The CUSTOMER identifier: 0..127 and 32768..65535
SSSS The SYSTEM identifier: 0..255
CCCC The COMMAND identifier: 0..255

The RC6A format itself is defined as follows (represented as a bit stream):
hhhhhhhh TT s UUUUUUU SSSSSSSS CCCCCCCC or
hhhhhhhh TT s UUUUUUUUUUUUUUU SSSSSSSS CCCCCCCC

hhhhhhhh Header data (17) (NOT to be biphase encoded)
‘11111110010101001'

TT Toggle bits (4) (NOT to be biphase encoded)
‘0011' or
‘1100'

s = 0 Customer range 0..127 (to be biphase encoded)
s = 1 Customer range 32768..65535 (to be biphase encoded)
UUUUUUU CUSTOMER identifier (7 or 15) (to be biphase encoded)

7 or 15 bits depending on the ‘s’ bit
SSSSSSSS System bits (8) (to be biphase encoded)
CCCCCCCC Command bits (8) (to be biphase encoded)

All bits to be biphase encoded will have a single bit split up into two half bits:
0 -> 01
1 -> 10 Note: inverse from RC5/RC5X biphase format!

Note: a RC6A bit transmission takes half the time of a RC5/RC5X bit transmission!

Note: this ‘6001 ..’ sequence is actually never used by the Pronto. ProntoEdit does not send the ‘6001 ..’ sequence but
instead uses the learned code format!

Example converting an RC5X command into a Pronto learned code format

RC5X 31 127 63 -> RC5X, System=31, Command=127, Data = 63

Pronto format: 5001 0000 0000 0002 001F 007F 003F 0000

Bitstream:
 ss T SSSSS dddd CCCCCC DDDDDD

 ss = 10 Add 64 to command (To be biphase encoded)
 ss = 11 Use command as it is (To be biphase encoded)
 T Toggle bit (To be biphase encoded)
 SSSSS System bits (5) (To be biphase encoded)
 dddd Divider bits (4) (NOT to be biphase encoded)
 '0000'
 CCCCCC Command bits (6) (To be biphase encoded)
 DDDDDD Data bits (6) (To be biphase encoded)

 ALL bits are biphase encoded, except for the dddd bits:
 0 -> 10
 1 -> 01

 ss T SSSSS dddd CCCCCC DDDDDD
 10 0 11111 0000 111111 111111 (Not yet biphase encoded)
 0110 10 0101010101 0000 010101010101 010101010101 (Biphase encoded, except for dddd)

 If this were to be translated into a learned Pronto command then we would seperate them in
 1->0 transitions and then count the consecutive one and zeroes:
 0110 10 0101010101 0000 010101010101 010101010101 (Original bitstream)
 0110 100 10 10 10 10 100000 10 10 10 10 10 10 10 10 10 10 10 1 (Spaced by 1->0 transitions)
 2 1 1 2 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? (Counted)

 These counted numbers are then converted into timing numbers. This means that they will be related
 to the carrier frequency. Assuming our unit base is 0010 (hex) then we have to multiply this base with
 the counter numbers

 2 1 1 2 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ?
 0040 0020 0020 0040 0020 0020 0020 0020 0020 0020 0020 0020 0020 00A0 etc

 The last, implicit, 0 timing is usually long enough time to separate individual command (ie. 0700).
 The complete result (including carrier leader and such) would be:

 0000 006D 0013 0000 0040 0020 0020 0040 0020 0020 0020 0020 0020 0020 0020 0020 0020 00A0 0020 0020 0020
 0020 0700

Example converting an RC6A command into a Pronto learned code format

RC6A 41251 1 1 -> RC6A, Customer code=41251, System=1, Command=1

Pronto format (hex): 6001 0000 0000 0002 A123 0001 0001 0000

Bitstream:
 hhhhhhhh TT s UUUUUUU SSSSSSSS CCCCCCCC
 hhhhhhhh TT s UUUUUUUUUUUUUUU SSSSSSSS CCCCCCCC

 hhhhhhhh Header data (17)
 '11111110010101001' (NOT to be biphase encoded!)
 TT Toggle (2/4)
 '0011' or (NOT to be biphase encoded!)
 '1100' (NOT to be biphase encoded!)
 s = 0 Custumer code 0..127 (To be biphase encoded)
 s = 1 Custumer code 32768..65536 (To be biphase encoded)
 Add 32768 to customer code
 UUUUUUU Customer Code (7/15) (To be biphase encoded)
 These are either 7 or 15 bits depending on the 's' size bit
 SSSSSSSS System bits (8) (To be biphase encoded)
 CCCCCCCC Command bits (8) (To be biphase encoded)

 ONLY system and command bits are biphase encoded:
 0 -> 01
 1 -> 10 Note the inverted nature in comparison with RC5

 hhhhhhhh TT s UUUUUUUUUUUUUUU SSSSSSSS CCCCCCCC
 11111110010101001 0011 1 010000100100011 00000001 00000001 (Not yet biphase encoded)
 11111110010101001 0011 10 011001010101100101100101011010 0101010101010110 0101010101010110 (Biphase encoded)
 111111100 10 10 100 100 11100 1100 10 10 10 1100 10 1100 10 10 110 100 10 10 10 10 10 10 10 1100 10 10 10 10 10 10 110 (1->0 seperated)
 etcetera

 Note that, with reference to the RC5X generated timing, the timings will be halved:
 RC5X: 0000 006D xxxx 0000 0040 0020 0020 0040 0020 0020 ...
 RC6A: 0000 006D xxxx 0000 0020 0010 0010 0020 0010 0010 ...

Pronto hardware
For those especially interested in the hardware of the Pronto, these are the main components the Pronto is made of:
- Motorola DragonBall MC68328PV16VA Microprocessor
- Samsumg (SEC) KM616V4000BLT-7L RAM, 256k x 16 bit, 3-3.6V, 70ns
- AMD AM29LV800BB-70EC Flash, 1M x 8 bit (512k x 16 bit), 3V, boot sector, 70ns
- Maxim MAX3221 RS232, 3-5.5V
- Touchscreen from Samsung

ISO 8601
The following is a description of the ISO (International Standards Organization) standard for numerical date and time
interchange formats. The standard, 8601:1988, supersedes the ISO standards: 2014, 2015, 2711, 3307 and 4031. A copy
of the actual standard may be obtained from ISO. The following is ONLY a description of this standard. If your organization is
performing or considering performing any type of electronic data exchange you should obtain a copy of the standard.

General Description
ISO 8601 defines formats for the representation of dates, times and date/time combinations. Both Local Time and Coordinated
Universal Time (UTC) are supported by ISO 8601. Dates are for the Gregorian calendar and can be given in year-month-day,
year-week-day or year-day formats. A 24-hour format is used to represent Time.

All date and time formats are represented with the largest units given first. The raking of these units is years, months, weeks,
days, hours, minutes and then seconds. Specific subsets are specified in the standard. An optional hyphen, “-“, character used
for separation.

Calendar Date Identification
Calendar dates are identified by year number (0-9999), month number (1-12) and a day number (1-31), based on the
Gregorian calendar standard.

Leap Year Identification
A leap years are identified by the following rules:
 The year number is evenly divisible by four, unless
 The year number is evenly divisible by 100, unless
 The year number is evenly divisible by 400

Leap years have an additional day during February, resulting in a 366-day year.

Ordinal Date Identification
Ordinal dates are identified by a year number (0-9999) and a day number (0-365, or for a leap year 0-366).

 Week Identification
A week is identified by a number between one and 52. The standard defines a week as starting Monday and ending
Sunday. The days of a week are Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday. The first week of a
year is the one that includes the first Thursday, or equivalently the one that includes January 4.

Time Identification
Time is represented by an hour number (0-24), a separation character, “:”, a minute number (0-59), another separation
character, “:”, and the second number (0-59). Midnight may be expressed as either 00:00:00 or 24:00:00.

Value Representation
Unless otherwise stated, all values are fixed width. Leading zeros are used to fill empty digits.
Alternative value representation is allowed with mutual agreement and based on other ISO standards.

Date Formats
The various accepted date formats are described below in this section.

Note: All the examples shown below use the date, December 08, 1997, and the time, 14:07:01 (time is based on a 24-hour
clock). The ordinal day number for the example date is 343, the week number is 49 and the week day number is 1.

Calendar Date Formats
The following complete, abbreviated or truncated formats are permissible:
 "19971208" or "1997-12-08" (complete representation)
 "1997-12" (reduced precision)
 "1997"
 "19"
 "971208" or "97-12-08" (truncated, current century assumed)
 "-9712" or "-97-12"
 "-97"
 "–1209" or "–12-09"
 "–12"
 "—09"

Ordinal Date Formats
The day number within a given year can be expressed as:
 "1997343" or "1997-343" (complete representation)
 “97343" or "97-343"
 "-343"

 Week/Day Formats
Dates with a given week number may be expressed as:
 "1997W491" or "1997-W49-1" (complete representation)
 "1997W49" or "1997-W49"
 "97W491" or "97-W49-1"
 "97W49" or "97-W49"
 "-7W491" or "-7-W49-1"
 "-W491" or "-W49-1"
 "-W49"
 "-W-1" (day of current week)
 "—1" (day of any week)

Time Formats
Time may be represented in local time and fractional local time formats. When used without the date, the time value should be
preceded by a “T” to avoid confusion with date values. The rules for date/time formats forbid the replacing of leading time
values with hyphens.

Note: As noted above, the time used for the examples given is 14:07:01, which is based on a 24-hour clock.

Local Time of Day
Local time of day may be expressed as:
 "140701" or "14:07:01" (complete representation)
 “1407" or "14:07"
 "14"
 "-0701" or "-07:01"
 "-07"
 "---01"

Fractional Local Time of Day
Decimal fractions may be included with an hour, minute or second. The decimal sign should be either a comma (preferred)
or a full stop. If the value is less than one then the decimal sign should be preceded by a zero. The number of decimal
places is set depending on the application.

The following formats are permitted (given two decimal places):
 "140701,02" or "14:07:01,02"
 "1407,12" or "14:07,12"
 "14,5"
 "-0701,02" or "-07:01,02"
 "-07,12"
 "--01,02"

Coordinated Universal Time (UTC)
Time can be expressed in UTC by appending the symbol "Z" , without spaces to any of the local time or fractional local time
formats.

For example:
 “Z140701"
 “Z14,5"

Difference between Local and UTC Times
The relationship of a local time to UTC can be expressed by appending a time zone indicator without spaces to the right-hand
side of the local time representation, which must include hours.

Omitting the minutes implies a lower precision for the time zone value, and is independent of the precision of the time value
to which the zone is attached. Time zones behind UTC use the "-" sign.
The standard implies (but does not state explicitly) that the extended zone format ("14:00") is used with extended format
times, and the basic zone format ("1400") with basic format times.

Combined Date/Time Formats
The symbol "T" is used to separate the date and time parts of the combined representation. This may be omitted by mutual
consent of those interchanging data, if ambiguity can be avoided.

The complete representation is as follows:
 "19971208T140701" or "1997-12-08T14:07:01"

The date and/or time components independently obey the rules already given in the sections above, with the restrictions:
 The date format should not be truncated on the right (i.e., represented with lower precision) and the time format

should not be truncated on the left (i.e., no leading hyphens).

 When the date format is truncated on the left, the leading hyphens may be omitted.

Periods of Time
There are four basic representations allowed for specifying periods of time. Where two time values are required, they are
separated with a forward slash, "/"; a double hyphen may be used in certain application areas. The dates are given in calendar
form, but ordinal or week/day may alternatively be used. Basic representation can be replaced by the appropriate extended
representation.
Likewise, valid reduced precision, truncated or decimal formats may be used.

Specific Start and Specific End
Date and Time start and end periods may be represented using the following format:
 "19971209T140701/19971209T223012"

Note: If the higher order components of the second period are omitted, the corresponding values from the first period
are used. Likewise, if a time zone is supplied for the first period but not the second, it is assumed to be used for
both.

Periods of Time, no Specific Start or End
When representing a period of time with no specific start or end then variable width values are used.
The value starts with "P", and is followed by a list of periods, each appended by a single letter designator: "Y" for years,
"M" for months, "D" for days, "W" for weeks, "H" for hours, "M" for minutes, and "S" for seconds. Time components must
be preceded by the "T" character. There is no extended representation defined for this format.

For example:
A period of 2 years, 5 months, 6 days, 10 hours, 20 minutes and 59 seconds is represented by:
 “P2Y5M6DT10H20M59S”

A period of 30 seconds by:
 “T30S”

A period of 10 days by:
 “P10D”

Periods of Time, Specific Points In Time
A period of time may also be expressed using the format specified for points in time, provided the values do not exceed 12
months, 30 days, 24 hours, 60 minutes, and 60 seconds.

Period with Specific Start
A specific point in time with a specified starting point and duration may be represented by providing a specific date and time
with the duration following, as shown below:
 "19971208T140701/P10Y5M20DT10H42M11S"

Period with Specific End
A specific point in time with a specific duration and end point may be represented a duration of time followed by a specific
point of time, as shown below:
 "P10Y5M20DT10H42M11S/19971209T140701"

