
Document : FLEXCOP_SYS_V100
Author : M. Majoor
Subject : FLEXCOP generic driver

Revision overview

Revision/Date Author Description

200504010 MM Initial draft

Communication with the FLEXCOP.SYS driver takes place using DeviceIO calls. This document describes these calls. Only the
function and parameters passed/returned are discussed.

The driver will de-allocate all allocated resources only when the driver is shut down. This means that allocated memory keeps being
allocated if not properly de-allocated. This also means that multiple instances, which use the driver, can use the same allocated
memory.

The driver is interrupt oriented. This means that automated actions are triggered only by means of an FLEXCOP interrupt. The
interrupt handling mechanism, sets the way how an interrupt is handled. The following actions are possible for every single
FLEXCOP interrupt:
- an ICTL_WAIT_NOTIFY is ‘acknowledged’ (eventActive)
- specific data is written to a specified FLEXCOP register (signalActive)
- specific data is copied to a FIFO buffer

The driver can use buffers to store data when an interrupt is activated. Although the term FIFO (First In First Out) is used here, it is
actually not true. This is because retrieving the data from the buffers is not under control of the driver. The application reading the
buffers is responsible for reading the correct buffer.
Although primarily used to buffer data from a single memory source, it can also be used to acquire data from multiple sources.

IOCTL_GET_VERSION
Get version of driver.

IN -

OUT USHORT majorversion Major version

USHORT minorversion Minor version

ULONG build Build date
$YYYYMMDD
YYYY = Year
MM = Month
DD = Day

IOCTL_GET_STATUS
Get status information.

IN ULONG DMAbuffer DMA buffer to return status for.

OUT ULONG interrupts Interrupt occurs (total interrupts for driver).

ULONG isr Interrupt status register of last occurred interrupt.
(FLEXCOP register $20C)

PVOID vaBuffer Virtual address DMA buffer.
You need this address when FIFO buffers are to be used. FIFO buffers can only
reference to memory allocated for DMA.

PHYSICAL_ADDRESS paBuffer Physical address DMA buffer.

ULONG buffersize Size of DMA buffer in bytes.

ULONG fifoOverflows Global number of FIFO overflows.
An overflow is indicated when a FIFO buffer is written to by the driver, without
having the FIFO buffer read by an application.

IOCTL_FLEXCOP_READ
Read register from FLEXCOP (dword access).

IN ULONG address Address of the register from the FLEXCOP to read.

OUT ULONG data Data read from register.

IOCTL_FLEXCOP_WRITE
Write data to a register of the FLEXCOP (dword access).

IN ULONG address Address of the register from the FLEXCOP to write to.

ULONG data Data to write to the register.

OUT -

IOCTL_FLEXCOP_READ2
Read register from FLEXCOP (word access).

IN ULONG address Address of the register from the FLEXCOP to read.

OUT USHORT data Data read from register.

IOCTL_FLEXCOP_WRITE2
Write data to a register of the FLEXCOP (word access).

IN ULONG address Address of the register from the FLEXCOP to write to.

USHORT data Data to write to the register.

OUT -

IOCTL_WAIT_NOTIFY
Wait for a notification (interrupt). Only when an interrupt, which must have been ‘activated’, is generated this call will return.
Thus, this call waits until this occurs.
The only way to recover for this, besides an actual interrupt, is to manually trigger an event using IOCTL_GENERATE_EVENT.
Note: the driver only supports a single IOCTL_WAIT_NOTIFY. If more than a single IOCTL_WAIT_NOTIFY is issued only the first
is ‘acknowledged’. The others will wait for the next generated event,

IN -

OUT ULONG bogus Nothing is actually being returned.

IOCTL_GENERATE_EVENT
Generate a manual event. Used to end an IOCTL_WAIT_NOTIFY manually.

IN ULONG bogus Not used.

OUT -

IOCTL_DMA_ALLOCATE
Allocate memory which can be used for DMA purposes. The memory allocated is a single contiguous block of memory.
The driver allows a maximum of 256 buffers to be allocated.

IN ULONG buffersize Size in bytes of contiguous memory to allocate.

OUT LONG bufferId Identification of buffer.
This identification is used to de-allocate the memory or getting status
information for it.

PVOID vaBuffer Virtual address of buffer.
This address is to be used when FIFO buffers are allocated. These FIFO buffers
are only allowed to use the memory allocated using this call.
Note: Windows 98 allows using this address to access the allocated memory
directly. However, this does not work with W2000 (use IOCTL_DMA_READ).
It is advised, for Windows 98 also, to use IOCTL_DMA_READ and
IOCTL_DMA_WRITE to access the allocated memory.

PHYSICAL_ADDRESS paBuffer Physical address of buffer.

ULONG buffersize Size in bytes of buffer

IOCTL_DMA_RELEASE
Release the memory previously allocated.
FIFO buffers using the memory being released are also being de-allocated.

IN LONG bufferId Identification of buffer.
This is the identification returned when IOCTL_DMA_ALLOCATE is used.

OUT -

IOCTL_DMA_READ
Read from IOCTL_DMA_ALLCOATE allocated memory.

IN LONG bufferId Identification of buffer.
This is the identification returned when IOCTL_DMA_ALLOCATE is used.

PUCHAR bufferTransfer Pointer to target buffer

ULONG bufferSourceIndex Index in bytes into source (DMA memory) to start copying from.

ULONG bufferTargetIndex Index in bytes into target buffer to start copying to.

ULONG bufferTransferLength Number of bytes to transfer.

OUT -

IOCTL_DMA_WRITE
Write to IOCTL_DMA_ALLCOATE allocated memory.

IN LONG bufferId Identification of buffer.
This is the identification returned when IOCTL_DMA_ALLOCATE is used.

PUCHAR bufferTransfer Pointer to source buffer

ULONG bufferSourceIndex Index in bytes into source buffer to start copying from.

ULONG bufferTargetIndex Index in bytes into target buffer (DMA memory) to start copying to.

ULONG bufferTransferLength Number of bytes to transfer.

OUT -

IOCTL_FIFO_ALLOCATE
Allocate a number of FIFO buffers of the indicated size. A FIFO uses (part of) allocated memory (IOCTL_DMA_ALLOCATE) as it’s
source data.
The driver can handle a maximum of 256 FIFO buffers.

IN LONG bufferId -

LONG buffers Number of FIFO buffers to allocate. These all use the same memory as source.
When a FIFO buffer is written to then the next FIFO in the list will be used
(assuming buffers > 1). When the last FIFO buffer is written to then the first
FIFO buffer is used as next target.

Array[0..1] of
PVOID bufferTransfer

Address of source data (data which is to be copied to the FIFO buffers). This
address must be within the range of driver allocated memory (i.e. allocated
with IOCTL_DMA_ALLOCATE). For each sub buffer a different source address
can be set.
The selection of which index to use is done by the driver (based on which buffer
is being written when an interrupt occurs).
Note: It is essential that the application writes or reads the sub buffer addresses
at least once (eg. addresses $000 and $0010) since these values are
preserved and used in the process. If the sub buffer addresses are never used
then the sub buffer addresses are unknown (the driver does not read it
specifically).

ULONG bufferTransferLength Size in bytes of the memory to be copied. This is also the size of the FIFO
buffers being allocated.

BOOLEAN bufferWritten -

ULONG bufferOrder -

ULONG bufferOverflows -

ULONG bufferIrqs -

ULONG bufferIrqOverflows -

OUT LONG bufferId Identifier of first FIFO buffer allocated.

LONG buffers -

PVOID array[0..1] of
bufferTransfer

-

ULONG bufferTransferLength -

BOOLEAN bufferWritten -

ULONG bufferOrder -

ULONG bufferOverflows -

ULONG bufferIrqs -

ULONG bufferIrqOverflows -

IOCTL_FIFO_RELEASE
De-allocate a number of FIFO buffers. Note that all FIFO’s using the same interrupt as source will be deactivated.

IN LONG bufferId FIFO buffer identification (first buffer) to release.
The driver will make sure that an invalid entry will be within the allowed range.
This means that a negative value will effectively use the very first buffer. A very
high value will use the last buffer.
To release all FIFO buffers use -1.

LONG buffers Number of FIFO buffers to release.
The driver will make sure that only the correct amount of buffers to release are
used.
To release all FIFO buffers use 256 (or a higher value).
Note: you should typically use the same number of buffers as have been
allocated.

PVOID array[0..1] of
bufferTransfer

-

ULONG bufferTransferLength -

BOOLEAN bufferWritten -

ULONG bufferOrder -

ULONG bufferOverflows -

ULONG bufferIrqs -

ULONG bufferIrqOverflows -

OUT LONG bufferId FIFO buffer identification of first buffer released.

LONG buffers Number of FIFO buffers actually released.

PVOID array[0..1] of
bufferTransfer

-

ULONG bufferTransferLength -

BOOLEAN bufferWritten -

ULONG bufferOrder -

ULONG bufferOverflows -

ULONG bufferIrqs -

ULONG bufferIrqOverflows -

IOCTL_FIFO_READ
Read data from a FIFO buffer. When a FIFO buffer is read it will be marked ‘read’. If the driver writes data into the FIFO buffer
it is marked as being ‘written’. When a buffer was already marked ‘written’ then an overflow is the result.

IN LONG bufferId FIFO buffer identification to read data from.

LONG buffers -

PVOID array[0..1] of
bufferTransfer

bufferTransefr[0] should point to the target buffer to where data from the FIFO
buffer is copied to.

ULONG bufferTransferLength Size of target buffer. Must be at least the size of the allocated FIFO buffer. The
whole FIFO buffer is always being copied.

BOOLEAN bufferWritten -

ULONG bufferOrder -

ULONG bufferOverflows -

ULONG bufferIrqs -

ULONG bufferIrqOverflows -

OUT LONG bufferId -

LONG buffers -

PVOID array[0..1] of
bufferTransfer

-

ULONG bufferTransferLength Number of actual bytes transferred. This is always the size of the allocated FIFO
buffer.

BOOLEAN bufferWritten Indicates if the FIFO contains valid data. If FALSE it indicates that the FIFO has
not been written to since it has been read.

ULONG bufferOrder Order number of the buffer being written. Every time a FIFO buffer is written to
it gets a number that is increased for every write using the same interrupt
source.

ULONG bufferOverflows Overflows counted on this particular FIFO buffer.

ULONG bufferIrqs Total number of interrupts generated for the interrupt source as used by the
FIFO.

ULONG bufferIrqOverflows Overflows counted on FIFO’s using the same interrupt source.

IOCTL_IRQ_WRITE
Write interrupt handling mechanism.
This defines the interrupt handling. An interrupt can be set to generate an event; set a FLEXCOP register to a defined state; copy
data to a FIFO buffer.

IN LONG IrqId FLEXCOP interrupt number (0..11). See the FLEXCOP
interrupt status register for the types.

IRQBUFFER
IrqInformation

ULONG irqsReceived Number of interrupts detected of this type (whether active
or not).

ULONG irqsActiveReceived Number of interrupts detected of this type when interrupt is
active.

BOOLEAN active Activates the interrupt or not.
This is the global activation of the interrupt. When FALSE
the other activations are not used.

BOOLEAN eventActive Indicates if a call which waits for an event is to be notified
(IOCTL_WAIT_NOTIFY).

BOOLEAN signalActive Indicates that the signaling mechanism is to be used.
The signaling mechanism will write specific data to a
FLEXCOP register.

BOOLEAN fifoActive Indicates that FIFO buffering is to be used.

BOOLEAN Reserved

ULONG signalRegister Register to read and write back when the signaling
mechanism is active (signalActive = TRUE)

ULONG signalAnd The AND value applied to the contents as read from the
register (signalRegister).

ULONG signalOr The OR value applied to the ANDed contents as read from
the register (signalRegister).

ULONG signalXor The XOR (invert) value applied to the ANDed and ORed
contents as read from the register (signalRegister).

UCHAR fifoBufferPrevious The last written FIFO buffer.

UCHAR fifoBufferFirst The first FIFO buffer to write data to when an interrupt is
generated.

UCHAR fifoBufferLast The last FIFO buffer to write data to when an interrupt is
generated.
Must be >= fifoBufferFirst.

ULONG fifoBufferCirculated Counter incremented when the first FIFO buffer is used.

ULONG fifoOverflows Counter incremented when an overflow is detected.
An overflow is detected when a FIFO buffer is written to
without that it has been read (i.e. bufferWritten flag is used
for this)

OUT -

IOCTL_IRQ_READ
Read interrupt handling mechanism.

IN LONG IrqId FLEXCOP interrupt number (0..11). See the FLEXCOP
interrupt status register for the types.

IRQBUFFER
IrqInformation

- -

OUT LONG IrqId FLEXCOP interrupt number (0..11). See the FLEXCOP
interrupt status register for the types.

IRQBUFFER
IrqInformation

ULONG irqsReceived Number of interrupts detected of this type (whether active
or not).

ULONG irqsActiveReceived Number of interrupts detected of this type when interrupt is
active.

BOOLEAN active Activates the interrupt or not.
This is the global activation of the interrupt. When FALSE
the other activations are not used.

BOOLEAN eventActive Indicates of a call which waits for an event is to be notified
(IOCTL_WAIT_NOTIFY).

BOOLEAN signalActive Indicates that the signaling mechanism is to be used.
The signaling mechanism will write specific data to a
FLEXCOP register.

BOOLEAN fifoActive Indicates that FIFO buffering is to be used.

BOOLEAN Reserved

ULONG signalRegister Register to read and write back when the signaling
mechanism is active (signalActive = TRUE)

ULONG signalAnd The AND value applied to the contents as read from the
register (signalRegister).

ULONG signalOr The OR value applied to the ANDed contents as read from
the register (signalRegister).

ULONG signalXor The XOR (invert) value applied to the ANDed and ORed
contents as read from the register (signalRegister).

UCHAR fifoBufferPrevious The last written FIFO buffer.

UCHAR fifoBufferFirst The first FIFO buffer to write data to when an interrupt is
generated.

UCHAR fifoBufferLast The last FIFO buffer to write data to when an interrupt is
generated.
Must be >= fifoBufferFirst.

ULONG fifoBufferCirculated Counter incremented when the first FIFO buffer is used.

ULONG fifoOverflows Counter incremented when an overflow is detected.
An overflow is detected when a FIFO buffer is written to
without that it has been read (i.e. bufferWritten flag is used
for this)

